Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37925067

RESUMO

Mycobacterium leprae-infected macrophages preferentially exhibit the regulatory M2 phenotype in vitro, which helps the immune escape unabated growth of M leprae in host cells. The mechanism that triggers macrophage polarization is still unknown. In this study, we performed single-cell RNA sequencing to determine the initial responses of human monocyte-derived macrophages against M leprae infection of 4 healthy individuals and found an increase in a major alternative-activated macrophage type that overexpressed NEAT1, CCL2, and CD163. Importantly, further functional analysis showed that ferroptosis was positively correlated with M2 polarization of macrophages, and in vitro experiments have shown that inhibition of ferroptosis promotes the survival of M leprae within macrophages. In addition, further joint analysis of our results with mutisequencing data from patients with leprosy and in vitro validation identified that CYBB was the pivotal molecule for ferroptosis that could promote the M2 polarization of M leprae-infected macrophages, resulting in the immune escape and unabated growth of pathogenic bacteria. Overall, our results suggest that M leprae facilitated its survival by inducing CYBB-mediated macrophage ferroptosis leading to its alternative activation and might reveal the potential for a new therapeutic strategy of leprosy.

2.
PLoS Negl Trop Dis ; 17(7): e0011477, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478057

RESUMO

BACKGROUND: M. leprae preferentially infects Schwann cells (SCs) in the peripheral nerves leading to nerve damage and irreversible disability. Knowledge of how M. leprae infects and interacts with host SCs is essential for understanding mechanisms of nerve damage and revealing potential new therapeutic strategies. METHODOLOGY/PRINCIPAL FINDINGS: We performed a time-course single-cell sequencing analysis of SCs infected with M. leprae at different time points, further analyzed the heterogeneity of SCs, subpopulations associated with M. leprae infection, developmental trajectory of SCs and validated by Western blot or flow cytometry. Different subpopulations of SCs exhibiting distinct genetic features and functional enrichments were present. We observed two subpopulations associated with M. leprae infection, a stem cell-like cell subpopulation increased significantly at 24 h but declined by 72 h after M. leprae infection, and an adipocyte-like cell subpopulation, emerged at 72 h post-infection. The results were validated and confirmed that a stem cell-like cell subpopulation was in the early stage of differentiation and could differentiate into an adipocyte-like cell subpopulation. CONCLUSIONS/SIGNIFICANCE: Our results present a systematic time-course analysis of SC heterogeneity after infection by M. leprae at single-cell resolution, provide valuable information to understand the critical biological processes underlying reprogramming and lipid metabolism during M. leprae infection of SCs, and increase understanding of the disease-causing mechanisms at play in leprosy patients as well as revealing potential new therapeutic strategies.


Assuntos
Hanseníase , Doenças do Sistema Nervoso Periférico , Humanos , Hanseníase/complicações , Mycobacterium leprae/fisiologia , Células de Schwann/metabolismo , Nervos Periféricos , Diferenciação Celular
3.
Cell Discov ; 8(1): 2, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35013182

RESUMO

Lepromatous leprosy (L-LEP), caused by the massive proliferation of Mycobacterium leprae primarily in macrophages, is an ideal disease model for investigating the molecular mechanism of intracellular bacteria evading or modulating host immune response. Here, we performed single-cell RNA sequencing of both skin biopsies and peripheral blood mononuclear cells (PBMCs) of L-LEP patients and healthy controls. In L-LEP lesions, we revealed remarkable upregulation of APOE expression that showed a negative correlation with the major histocompatibility complex II gene HLA-DQB2 and MIF, which encodes a pro-inflammatory and anti-microbial cytokine, in the subset of macrophages exhibiting a high expression level of LIPA. The exhaustion of CD8+ T cells featured by the high expression of TIGIT and LAG3 in L-LEP lesions was demonstrated. Moreover, remarkable enhancement of inhibitory immune receptors mediated crosstalk between skin immune cells was observed in L-LEP lesions. For PBMCs, a high expression level of APOE in the HLA-DRhighFBP1high monocyte subset and the expansion of regulatory T cells were found to be associated with L-LEP. These findings revealed the primary suppressive landscape in the L-LEP patients, providing potential targets for the intervention of intracellular bacteria caused persistent infections.

4.
Acta Derm Venereol ; 100(17): adv00299, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047146

RESUMO

Filaggrin, encoded by the FLG gene, plays a crucial role in the barrier function of epidermis, but the association between FLG loss-of-function mutations and infectious skin diseases has not been systematically studied. FLG coding sequences from 945 patients with leprosy and 916 healthy controls were captured and enriched using an array-based high-throughput system, and subjected to next-generation sequencing. The loss-of-function mutations found were further validated by Sanger sequencing. A total of 21 loss-of-function mutations were found in 945 patients with leprosy, with a carrier rate of 17.53%, while the prevalence of these mutations in 916 healthy controls was 14.77%, which was significantly lower than in patients. Two individual FLG loss-of-function mutations (K4022X and Q1790X) were found to be significantly associated with leprosy. These results suggest a possible role for filaggrin in defending against leprosy pathogens.


Assuntos
Hanseníase , Proteínas S100/genética , Proteínas Filagrinas , Predisposição Genética para Doença , Genótipo , Humanos , Proteínas de Filamentos Intermediários/genética , Hanseníase/diagnóstico , Hanseníase/genética , Mutação , Proteínas S100/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA